GABAA-benzodiazepine-chloride receptor-targeted therapy for tinnitus control: preliminary report.
نویسندگان
چکیده
Our goal was to attempt to establish neuropharmacological tinnitus control (i.e., relief) with medication directed to restoration of a deficiency in the gamma-aminobutyric acid-benzodiazepine-chloride receptor in tinnitus patients with a diagnosis of a predominantly central type tinnitus. Thirty tinnitus patients completed a medical audiological tinnitus patient protocol and brain magnetic resonance imaging and single-photon emission computed tomography of brain. Treatment with GABAergic and benzodiazepine medication continued for 4-6 weeks. A maintenance dose was continued when tinnitus control was positive. Intake and outcome questionnaires were completed. Of 30 patients, 21 completed the trial (70%). Tinnitus control lasting from 4-6 weeks to 3 years was reported by 19 of the 21 (90%). The trial was not completed by 9 of the 30 (30%). No patient experienced an increase in tinnitus intensity or annoyance. Sequential brain single-photon emission computed tomography in 10 patients revealed objective evidence of increased brain perfusion. Patients with a predominantly central type tinnitus experience significant tinnitus control with medication directed to the gamma-aminobutyric acid-benzodiazepine-chloride receptor.
منابع مشابه
Subunit selectivity and epitope characterization of mAbs directed against the GABAA/benzodiazepine receptor
mAbs bd 17, bd 24, and bd 28 raised against bovine cerebral gamma-aminobutyric acid (GABAA)/benzodiazepine receptors were analyzed for their ability to detect each of 12 GABAA receptor subunits expressed in cultured mammalian cells. Results showed that mAb bd 17 recognizes epitopes on both beta 2 and beta 3 subunits while mAb bd 24 is selective for the alpha 1 subunit of human and bovine, but n...
متن کاملLigands of the GABAA Receptor Benzodiazepine Binding Site
Benzodiazepine (BZ) binding site ligands are important central nervous system (CNS) drugs. Their numbers and our knowledge of how they interact with the BZ-binding site of GABAA receptors are both rapidly expanding. The GABAA receptor is a member of the ligand-gated ion channel superfamily. In general, it consists of an assembly of transmembrane pentamers of different subunit compositions (1). ...
متن کاملStructural Analysis and Binding Modes of Benzodiazepines with Modeled GABAA Receptor Subunit Gamma-2
Activation of chloride gated GABAA receptors regulates the excitatory transmission in the epileptic brain. Positive allosteric modulation of these receptors via distinct recognition sites is the therapeutic mechanism of antiepileptic agents which prevents the hyperexcitability associated with epilepsy. These distinct sites are based on subunit composition which determines binding of various dru...
متن کاملHypothermic activity of acetaminophen; Involvement of GABAA receptor, theoretical and experimental studies
Objective(s):The mechanism of hypothermia action of acetaminophen (APAP) remains unclear even 125 years after its synthesis. Acetaminophen produces hypothermia. The mechanism of this reduction in core body temperature is not clear but evidence shows that it is not dependent on opioid and cannabinoid receptors. Because of strong documents about the roles of GABA and benzodiazepine receptors in h...
متن کاملHigh- and Low-Rearing Rats Differ in the Brain Excitability Controlled by the Allosteric Benzodiazepine Site in the GABAA Receptor
Rearing is an exploratory behavior induced by novelty, such as exposure to an open field. Stimulation of certain brain regions, including the hippocampus, induces both rearing and clonic convulsions. Brain excitability is controlled by gamma-aminobutyric acid (GABA) inhibitory neurotransmission through its ionotropic GABAA/allosteric benzodiazepine site. Drugs that decrease GABAA receptor fast ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The international tinnitus journal
دوره 8 1 شماره
صفحات -
تاریخ انتشار 2002